使用kubeadm安装Kubernetes 1.12
📅 2018-10-02 | 🖱️
kubeadm是Kubernetes官方提供的用于快速安装Kubernetes集群的工具,伴随Kubernetes每个版本的发布都会同步更新,kubeadm会对集群配置方面的一些实践做调整,通过实验kubeadm可以学习到Kubernetes官方在集群配置上一些新的最佳实践。
在Kubernetes的文档Creating a single master cluster with kubeadm中已经给出了目前kubeadm的主要特性已经处于beta状态了,在2018年将进入GA状态,说明kubeadm离可以在生产环境中使用的距离越来越近了。
当然我们线上稳定运行的Kubernetes集群是使用ansible以二进制形式的部署的高可用集群,这里体验Kubernetes 1.12中的kubeadm是为了跟随官方对集群初始化和配置方面的最佳实践,进一步完善我们的ansible部署脚本。
1.准备 #
1.1系统配置 #
在安装之前,需要先做如下准备。两台CentOS 7.4主机如下:
1cat /etc/hosts
2192.168.61.11 node1
3192.168.61.12 node2
如果各个主机启用了防火墙,需要开放Kubernetes各个组件所需要的端口,可以查看Installing kubeadm中的"Check required ports"一节。 这里简单起见在各节点禁用防火墙:
1systemctl stop firewalld
2systemctl disable firewalld
禁用SELINUX:
1setenforce 0
1vi /etc/selinux/config
2SELINUX=disabled
创建/etc/sysctl.d/k8s.conf文件,添加如下内容:
1net.bridge.bridge-nf-call-ip6tables = 1
2net.bridge.bridge-nf-call-iptables = 1
3net.ipv4.ip_forward = 1
执行命令使修改生效。
1modprobe br_netfilter
2sysctl -p /etc/sysctl.d/k8s.conf
1.2安装Docker #
Kubernetes从1.6开始使用CRI(Container Runtime Interface)容器运行时接口。默认的容器运行时仍然是Docker,使用的是kubelet中内置dockershim
CRI实现。
安装docker的yum源:
1yum install -y yum-utils device-mapper-persistent-data lvm2
2yum-config-manager \
3 --add-repo \
4 https://download.docker.com/linux/centos/docker-ce.repo
查看最新的Docker版本:
1yum list docker-ce.x86_64 --showduplicates |sort -r
2docker-ce.x86_64 18.06.1.ce-3.el7 docker-ce-stable
3docker-ce.x86_64 18.06.0.ce-3.el7 docker-ce-stable
4docker-ce.x86_64 18.03.1.ce-1.el7.centos docker-ce-stable
5docker-ce.x86_64 18.03.0.ce-1.el7.centos docker-ce-stable
6docker-ce.x86_64 17.12.1.ce-1.el7.centos docker-ce-stable
7docker-ce.x86_64 17.12.0.ce-1.el7.centos docker-ce-stable
8docker-ce.x86_64 17.09.1.ce-1.el7.centos docker-ce-stable
9docker-ce.x86_64 17.09.0.ce-1.el7.centos docker-ce-stable
10docker-ce.x86_64 17.06.2.ce-1.el7.centos docker-ce-stable
11docker-ce.x86_64 17.06.1.ce-1.el7.centos docker-ce-stable
12docker-ce.x86_64 17.06.0.ce-1.el7.centos docker-ce-stable
13docker-ce.x86_64 17.03.3.ce-1.el7 docker-ce-stable
14docker-ce.x86_64 17.03.2.ce-1.el7.centos docker-ce-stable
15docker-ce.x86_64 17.03.1.ce-1.el7.centos docker-ce-stable
16docker-ce.x86_64 17.03.0.ce-1.el7.centos docker-ce-stable
Kubernetes 1.12已经针对Docker的1.11.1, 1.12.1, 1.13.1, 17.03, 17.06, 17.09, 18.06等版本做了验证,需要注意Kubernetes 1.12最低支持的Docker版本是1.11.1。 我们这里在各节点安装docker的18.06.1版本。
1yum makecache fast
2
3yum install -y --setopt=obsoletes=0 \
4 docker-ce-18.06.1.ce-3.el7
5
6systemctl start docker
7systemctl enable docker
确认一下iptables filter表中FOWARD链的默认策略(pllicy)为ACCEPT。
1iptables -nvL
2Chain INPUT (policy ACCEPT 263 packets, 19209 bytes)
3 pkts bytes target prot opt in out source destination
4
5Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
6 pkts bytes target prot opt in out source destination
7 0 0 DOCKER-USER all -- * * 0.0.0.0/0 0.0.0.0/0
8 0 0 DOCKER-ISOLATION-STAGE-1 all -- * * 0.0.0.0/0 0.0.0.0/0
9 0 0 ACCEPT all -- * docker0 0.0.0.0/0 0.0.0.0/0 ctstate RELATED,ESTABLISHED
10 0 0 DOCKER all -- * docker0 0.0.0.0/0 0.0.0.0/0
11 0 0 ACCEPT all -- docker0 !docker0 0.0.0.0/0 0.0.0.0/0
12 0 0 ACCEPT all -- docker0 docker0 0.0.0.0/0 0.0.0.0/0
Docker从1.13版本开始调整了默认的防火墙规则,禁用了iptables filter表中FOWARD链,这样会引起Kubernetes集群中跨Node的Pod无法通信。但这里通过安装docker 1806,发现默认策略又改回了ACCEPT,这个不知道是从哪个版本改回的,因为我们线上版本使用的1706还是需要手动调整这个策略的。
2.使用kubeadm部署Kubernetes #
2.1 安装kubeadm和kubelet #
下面在各节点安装kubeadm和kubelet:
1cat <<EOF > /etc/yum.repos.d/kubernetes.repo
2[kubernetes]
3name=Kubernetes
4baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
5enabled=1
6gpgcheck=1
7repo_gpgcheck=1
8gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg
9 https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
10EOF
测试地址https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
是否可用,如果不可用需要科学上网。
1curl https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
1yum makecache fast
2yum install -y kubelet kubeadm kubectl
3
4...
5Installed:
6 kubeadm.x86_64 0:1.12.0-0 kubectl.x86_64 0:1.12.0-0 kubelet.x86_64 0:1.12.0-0
7Dependency Installed:
8 cri-tools.x86_64 0:1.11.1-0 kubernetes-cni.x86_64 0:0.6.0-0 socat.x86_64 0:1.7.3.2-2.el7
- 从安装结果可以看出还安装了cri-tools, kubernetes-cni, socat三个依赖: * 官方从Kubernetes 1.9开始就将cni依赖升级到了0.6.0版本,在当前1.12中仍然是这个版本 * socat是kubelet的依赖 * cri-tools是CRI(Container Runtime Interface)容器运行时接口的命令行工具
运行kubelet --help
可以看到原来kubelet的绝大多数命令行flag参数都被DEPRECATED
了,如:
1......
2--address 0.0.0.0 The IP address for the Kubelet to serve on (set to 0.0.0.0 for all IPv4 interfaces and `::` for all IPv6 interfaces) (default 0.0.0.0) (DEPRECATED: This parameter should be set via the config file specified by the Kubelet's --config flag. See https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/ for more information.)
3......
而官方推荐我们使用--config
指定配置文件,并在配置文件中指定原来这些flag所配置的内容。具体内容可以查看这里Set Kubelet parameters via a config file。这也是Kubernetes为了支持动态Kubelet配置(Dynamic Kubelet Configuration)才这么做的,参考Reconfigure a Node’s Kubelet in a Live Cluster。
kubelet的配置文件必须是json或yaml格式,具体可查看这里。
Kubernetes 1.8开始要求关闭系统的Swap,如果不关闭,默认配置下kubelet将无法启动。
关闭系统的Swap方法如下:
1swapoff -a
修改 /etc/fstab 文件,注释掉 SWAP 的自动挂载,使用free -m
确认swap已经关闭。
swappiness参数调整,修改/etc/sysctl.d/k8s.conf添加下面一行:
1vm.swappiness=0
执行sysctl -p /etc/sysctl.d/k8s.conf
使修改生效。
因为这里本次用于测试两台主机上还运行其他服务,关闭swap可能会对其他服务产生影响,所以这里修改kubelet的配置去掉这个限制。
之前的Kubernetes版本我们都是通过kubelet的启动参数--fail-swap-on=false
去掉这个限制的。前面已经分析了Kubernetes不再推荐使用启动参数,而推荐使用配置文件。
所以这里我们改成配置文件配置的形式。
查看/etc/systemd/system/kubelet.service.d/10-kubeadm.conf,看到了下面的内容:
1# Note: This dropin only works with kubeadm and kubelet v1.11+
2[Service]
3Environment="KUBELET_KUBECONFIG_ARGS=--bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf --kubeconfig=/etc/kubernetes/kubelet.conf"
4Environment="KUBELET_CONFIG_ARGS=--config=/var/lib/kubelet/config.yaml"
5# This is a file that "kubeadm init" and "kubeadm join" generates at runtime, populating the KUBELET_KUBEADM_ARGS variable dynamically
6EnvironmentFile=-/var/lib/kubelet/kubeadm-flags.env
7# This is a file that the user can use for overrides of the kubelet args as a last resort. Preferably, the user should use
8# the .NodeRegistration.KubeletExtraArgs object in the configuration files instead. KUBELET_EXTRA_ARGS should be sourced from this file.
9EnvironmentFile=-/etc/sysconfig/kubelet
10ExecStart=
11ExecStart=/usr/bin/kubelet $KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARGS $KUBELET_EXTRA_ARGS
上面显示kubeadm部署的kubelet的配置文件--config=/var/lib/kubelet/config.yaml
,实际去查看/var/lib/kubelet和这个config.yaml的配置文件都没有被创建。
可以猜想肯定是运行kubeadm
初始化集群时会自动生成这个配置文件,而如果我们不关闭Swap的话,第一次初始化集群肯定会失败的。
所以还是老老实实的回到使用kubelet的启动参数--fail-swap-on=false
去掉必须关闭Swap的限制。
修改/etc/sysconfig/kubelet,加入:
1KUBELET_EXTRA_ARGS=--fail-swap-on=false
2.2 使用kubeadm init初始化集群 #
在各节点开机启动kubelet服务:
1systemctl enable kubelet.service
接下来使用kubeadm初始化集群,选择node1作为Master Node,在node1上执行下面的命令:
1kubeadm init \
2 --kubernetes-version=v1.12.0 \
3 --pod-network-cidr=10.244.0.0/16 \
4 --apiserver-advertise-address=192.168.61.11
因为我们选择flannel作为Pod网络插件,所以上面的命令指定–pod-network-cidr=10.244.0.0/16。
执行时报了下面的错误:
1[init] using Kubernetes version: v1.12.0
2[preflight] running pre-flight checks
3[preflight] Some fatal errors occurred:
4 [ERROR Swap]: running with swap on is not supported. Please disable swap
5[preflight] If you know what you are doing, you can make a check non-fatal with `--ignore-preflight-errors=...`
有一个错误信息是running with swap on is not supported. Please disable swap
。因为我们决定配置failSwapOn: false
,所以重新添加–ignore-preflight-errors=Swap参数忽略这个错误,重新运行。
1kubeadm init \
2 --kubernetes-version=v1.12.0 \
3 --pod-network-cidr=10.244.0.0/16 \
4 --apiserver-advertise-address=192.168.61.11 \
5 --ignore-preflight-errors=Swap
6
7[init] using Kubernetes version: v1.12.0
8[preflight] running pre-flight checks
9 [WARNING Swap]: running with swap on is not supported. Please disable swap
10[preflight/images] Pulling images required for setting up a Kubernetes cluster
11[preflight/images] This might take a minute or two, depending on the speed of your internet connection
12[preflight/images] You can also perform this action in beforehand using 'kubeadm config images pull'
13[kubelet] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
14[kubelet] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
15[preflight] Activating the kubelet service
16[certificates] Generated etcd/ca certificate and key.
17[certificates] Generated etcd/peer certificate and key.
18[certificates] etcd/peer serving cert is signed for DNS names [node1 localhost] and IPs [192.168.61.11 127.0.0.1 ::1]
19[certificates] Generated apiserver-etcd-client certificate and key.
20[certificates] Generated etcd/server certificate and key.
21[certificates] etcd/server serving cert is signed for DNS names [node1 localhost] and IPs [127.0.0.1 ::1]
22[certificates] Generated etcd/healthcheck-client certificate and key.
23[certificates] Generated ca certificate and key.
24[certificates] Generated apiserver certificate and key.
25[certificates] apiserver serving cert is signed for DNS names [node1 kubernetes kubernetes.default kubernetes.default.svc kubernetes.default.svc.cluster.local] and IPs [10.96.0.1 192.168.61.11]
26[certificates] Generated apiserver-kubelet-client certificate and key.
27[certificates] Generated front-proxy-ca certificate and key.
28[certificates] Generated front-proxy-client certificate and key.
29[certificates] valid certificates and keys now exist in "/etc/kubernetes/pki"
30[certificates] Generated sa key and public key.
31[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/admin.conf"
32[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/kubelet.conf"
33[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/controller-manager.conf"
34[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/scheduler.conf"
35[controlplane] wrote Static Pod manifest for component kube-apiserver to "/etc/kubernetes/manifests/kube-apiserver.yaml"
36[controlplane] wrote Static Pod manifest for component kube-controller-manager to "/etc/kubernetes/manifests/kube-controller-manager.yaml"
37[controlplane] wrote Static Pod manifest for component kube-scheduler to "/etc/kubernetes/manifests/kube-scheduler.yaml"
38[etcd] Wrote Static Pod manifest for a local etcd instance to "/etc/kubernetes/manifests/etcd.yaml"
39[init] waiting for the kubelet to boot up the control plane as Static Pods from directory "/etc/kubernetes/manifests"
40[init] this might take a minute or longer if the control plane images have to be pulled
41[apiclient] All control plane components are healthy after 26.503672 seconds
42[uploadconfig] storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace
43[kubelet] Creating a ConfigMap "kubelet-config-1.12" in namespace kube-system with the configuration for the kubelets in the cluster
44[markmaster] Marking the node node1 as master by adding the label "node-role.kubernetes.io/master=''"
45[markmaster] Marking the node node1 as master by adding the taints [node-role.kubernetes.io/master:NoSchedule]
46[patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock" to the Node API object "node1" as an annotation
47[bootstraptoken] using token: zalj3i.q831ehufqb98d1ic
48[bootstraptoken] configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certificate credentials
49[bootstraptoken] configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token
50[bootstraptoken] configured RBAC rules to allow certificate rotation for all node client certificates in the cluster
51[bootstraptoken] creating the "cluster-info" ConfigMap in the "kube-public" namespace
52[addons] Applied essential addon: CoreDNS
53[addons] Applied essential addon: kube-proxy
54
55Your Kubernetes master has initialized successfully!
56
57To start using your cluster, you need to run the following as a regular user:
58
59 mkdir -p $HOME/.kube
60 sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
61 sudo chown $(id -u):$(id -g) $HOME/.kube/config
62
63You should now deploy a pod network to the cluster.
64Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
65 https://kubernetes.io/docs/concepts/cluster-administration/addons/
66
67You can now join any number of machines by running the following on each node
68as root:
69
70 kubeadm join 192.168.61.11:6443 --token zalj3i.q831ehufqb98d1ic --discovery-token-ca-cert-hash sha256:6ee48b19ba61a2dda77f6b60687c5fd11072ab898cfdfef32a68821d1dbe8efa
上面记录了完成的初始化输出的内容,根据输出的内容基本上可以看出手动初始化安装一个Kubernetes集群所需要的关键步骤。
其中有以下关键内容:
[kubelet]
生成kubelet的配置文件"/var/lib/kubelet/config.yaml"[certificates]
生成相关的各种证书[kubeconfig]
生成相关的kubeconfig文件[bootstraptoken]
生成token记录下来,后边使用kubeadm join
往集群中添加节点时会用到- 下面的命令是配置常规用户如何使用kubectl访问集群:
1mkdir -p $HOME/.kube 2sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config 3sudo chown $(id -u):$(id -g) $HOME/.kube/config
- 最后给出了将节点加入集群的命令
kubeadm join 192.168.61.11:6443 --token zalj3i.q831ehufqb98d1ic --discovery-token-ca-cert-hash sha256:6ee48b19ba61a2dda77f6b60687c5fd11072ab898cfdfef32a68821d1dbe8efa
查看一下集群状态:
1kubectl get cs
2NAME STATUS MESSAGE ERROR
3controller-manager Healthy ok
4scheduler Healthy ok
5etcd-0 Healthy {"health": "true"}
确认个组件都处于healthy状态。
集群初始化如果遇到问题,可以使用下面的命令进行清理:
1kubeadm reset
2ifconfig cni0 down
3ip link delete cni0
4ifconfig flannel.1 down
5ip link delete flannel.1
6rm -rf /var/lib/cni/
2.3 安装Pod Network #
接下来安装flannel network add-on:
1mkdir -p ~/k8s/
2cd ~/k8s
3wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
4kubectl apply -f kube-flannel.yml
5
6clusterrole.rbac.authorization.k8s.io/flannel created
7clusterrolebinding.rbac.authorization.k8s.io/flannel created
8serviceaccount/flannel created
9configmap/kube-flannel-cfg created
10daemonset.extensions/kube-flannel-ds-amd64 created
11daemonset.extensions/kube-flannel-ds-arm64 created
12daemonset.extensions/kube-flannel-ds-arm created
13daemonset.extensions/kube-flannel-ds-ppc64le created
14daemonset.extensions/kube-flannel-ds-s390x created
这里注意kube-flannel.yml这个文件里的flannel的镜像是0.10.0,quay.io/coreos/flannel:v0.10.0-amd64
如果Node有多个网卡的话,参考flannel issues 39701,目前需要在kube-flannel.yml中使用--iface
参数指定集群主机内网网卡的名称,否则可能会出现dns无法解析。需要将kube-flannel.yml下载到本地,flanneld启动参数加上--iface=<iface-name>
1......
2containers:
3 - name: kube-flannel
4 image: quay.io/coreos/flannel:v0.10.0-amd64
5 command:
6 - /opt/bin/flanneld
7 args:
8 - --ip-masq
9 - --kube-subnet-mgr
10 - --iface=eth1
11......
本次按上面的步骤部署flannel,发现没有效果,查看一下集群中的daemonset:
1kubectl get ds -l app=flannel -n kube-system
2NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
3kube-flannel-ds-amd64 0 0 0 0 0 beta.kubernetes.i/oarch=amd64 17s
4kube-flannel-ds-arm 0 0 0 0 0 beta.kubernetes.io/arch=arm 17s
5kube-flannel-ds-arm64 0 0 0 0 0 beta.kubernetes.io/arch=arm64 17s
6kube-flannel-ds-ppc64le 0 0 0 0 0 beta.kubernetes.io/arch=ppc64le 17s
7kube-flannel-ds-s390x 0 0 0 0 0 beta.kubernetes.io/arch=s390x 17s
结合kube-flannel.yml,fannel官方的部署yaml文件是要在集群中创建5个针对不同平台的DaemonSet,通过Node的Label beta.kubernetes.i/oarch
,在对应不同平台的Node节点上启动flannel的容器。当前的node1节点是beta.kubernetes.i/oarch=amd64
,因此对于kube-flannel-ds-amd64
这个DaemonSet来说,它的DESIRED数量应该为1才对。查看kube-flannel.yml中关于kube-flannel-ds-amd64
的内容:
1spec:
2 template:
3 metadata:
4 labels:
5 tier: node
6 app: flannel
7 spec:
8 hostNetwork: true
9 nodeSelector:
10 beta.kubernetes.io/arch: amd64
11 tolerations:
12 - key: node-role.kubernetes.io/master
13 operator: Exists
14 effect: NoSchedule
kube-flannel.yml中已经为kube-flannel-ds-amd64
正确设置了调度相关的nodeSelector和tolerations,即将这个DaemonSet的Pod调度到Label为beta.kubernetes.io/arch: amd64
,同时容忍node-role.kubernetes.io/master:NoSchedule
污点的节点上。这个按照以前的部署经验来说当前的主节点node1应该是多满足的,可是现在是这样的吗?我们查看一下node1节点的基本信息:
1kubectl describe node node1
2Name: node1
3Roles: master
4Labels: beta.kubernetes.io/arch=amd64
5 beta.kubernetes.io/os=linux
6 kubernetes.io/hostname=node1
7 node-role.kubernetes.io/master=
8Annotations: kubeadm.alpha.kubernetes.io/cri-socket: /var/run/dockershim.sock
9 node.alpha.kubernetes.io/ttl: 0
10 volumes.kubernetes.io/controller-managed-attach-detach: true
11CreationTimestamp: Wed, 03 Oct 2018 09:03:04 +0800
12Taints: node-role.kubernetes.io/master:NoSchedule
13 node.kubernetes.io/not-ready:NoSchedule
14Unschedulable: false
可以看到1.12版本的kubeadm额外给node1节点设置了一个污点(Taint):node.kubernetes.io/not-ready:NoSchedule
,很容易理解,即如果节点还没有ready之前,是不接受调度的。可是如果Kubernetes的网络插件还没有部署的话,节点是不会进入ready状态的。因此我们修改以下kube-flannel.yaml
的内容,加入对node.kubernetes.io/not-ready:NoSchedule
这个污点的容忍:
1tolerations:
2 - key: node-role.kubernetes.io/master
3 operator: Exists
4 effect: NoSchedule
5 - key: node.kubernetes.io/not-ready
6 operator: Exists
7 effect: NoSchedule
重新apply一下kubectl apply -f kube-flannel.yml
,这次成功完成flannel的部署了。
使用kubectl get pod --all-namespaces -o wide
确保所有的Pod都处于Running状态。
1kubectl get pod --all-namespaces -o wide
2NAMESPACE NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
3kube-system coredns-576cbf47c7-njt7l 1/1 Running 0 12m 10.244.0.3 node1 <none>
4kube-system coredns-576cbf47c7-vg2gd 1/1 Running 0 12m 10.244.0.2 node1 <none>
5kube-system etcd-node1 1/1 Running 0 12m 192.168.61.11 node1 <none>
6kube-system kube-apiserver-node1 1/1 Running 0 12m 192.168.61.11 node1 <none>
7kube-system kube-controller-manager-node1 1/1 Running 0 12m 192.168.61.11 node1 <none>
8kube-system kube-flannel-ds-amd64-bxtqh 1/1 Running 0 2m 192.168.61.11 node1 <none>
9kube-system kube-proxy-fb542 1/1 Running 0 12m 192.168.61.11 node1 <none>
10kube-system kube-scheduler-node1 1/1 Running 0 12m 192.168.61.11 node1 <none>
后来也在flannel的github中找到了关于node.kubernetes.io/not-ready:NoSchedule
这个问题的讨论,相信很快就会将相关配置修改正确,详见https://github.com/coreos/flannel/issues/1044
。
2.4 master node参与工作负载 #
使用kubeadm初始化的集群,出于安全考虑Pod不会被调度到Master Node上,也就是说Master Node不参与工作负载。这是因为当前的master节点node1被打上了node-role.kubernetes.io/master:NoSchedule
的污点:
1kubectl describe node node1 | grep Taint
2Taints: node-role.kubernetes.io/master:NoSchedule
因为这里搭建的是测试环境,去掉这个污点使node1参与工作负载:
1kubectl taint nodes node1 node-role.kubernetes.io/master-
2node "node1" untainted
2.5 测试DNS #
1kubectl run curl --image=radial/busyboxplus:curl -it
2kubectl run --generator=deployment/apps.v1beta1 is DEPRECATED and will be removed in a future version. Use kubectl create instead.
3If you don't see a command prompt, try pressing enter.
4[ root@curl-5cc7b478b6-r997p:/ ]$
进入后执行nslookup kubernetes.default
确认解析正常:
1nslookup kubernetes.default
2Server: 10.96.0.10
3Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local
4
5Name: kubernetes.default
6Address 1: 10.96.0.1 kubernetes.default.svc.cluster.local
2.6 向Kubernetes集群中添加Node节点 #
下面我们将node2这个主机添加到Kubernetes集群中,因为我们同样在node2上的kubelet的启动参数中去掉了必须关闭swap的限制,所以同样需要--ignore-preflight-errors=Swap
这个参数。
在node2上执行:
1kubeadm join 192.168.61.11:6443 --token zalj3i.q831ehufqb98d1ic --discovery-token-ca-cert-hash sha256:6ee48b19ba61a2dda77f6b60687c5fd11072ab898cfdfef32a68821d1dbe8efa \
2 --ignore-preflight-errors=Swap
3
4[preflight] running pre-flight checks
5 [WARNING RequiredIPVSKernelModulesAvailable]: the IPVS proxier will not be used, because the following required kernel modules are not loaded: [ip_vs_rr ip_vs_wrr ip_vs_sh ip_vs] or no builtin kernel ipvs support: map[ip_vs:{} ip_vs_rr:{} ip_vs_wrr:{} ip_vs_sh:{} nf_conntrack_ipv4:{}]
6you can solve this problem with following methods:
7 1. Run 'modprobe -- ' to load missing kernel modules;
82. Provide the missing builtin kernel ipvs support
9
10 [WARNING Swap]: running with swap on is not supported. Please disable swap
11[discovery] Trying to connect to API Server "192.168.61.11:6443"
12[discovery] Created cluster-info discovery client, requesting info from "https://192.168.61.11:6443"
13[discovery] Requesting info from "https://192.168.61.11:6443" again to validate TLS against the pinned public key
14[discovery] Cluster info signature and contents are valid and TLS certificate validates against pinned roots, will use API Server "192.168.61.11:6443"
15[discovery] Successfully established connection with API Server "192.168.61.11:6443"
16[kubelet] Downloading configuration for the kubelet from the "kubelet-config-1.12" ConfigMap in the kube-system namespace
17[kubelet] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
18[kubelet] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
19[preflight] Activating the kubelet service
20[tlsbootstrap] Waiting for the kubelet to perform the TLS Bootstrap...
21[patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock" to the Node API object "node2" as an annotation
22
23This node has joined the cluster:
24* Certificate signing request was sent to apiserver and a response was received.
25* The Kubelet was informed of the new secure connection details.
26
27Run 'kubectl get nodes' on the master to see this node join the cluster.
node2加入集群很是顺利,下面在master节点上执行命令查看集群中的节点:
1kubectl get nodes
2NAME STATUS ROLES AGE VERSION
3node1 Ready master 26m v1.12.0
4node2 Ready <none> 2m v1.12.0
如何从集群中移除Node #
如果需要从集群中移除node2这个Node执行下面的命令:
在master节点上执行:
1kubectl drain node2 --delete-local-data --force --ignore-daemonsets
2kubectl delete node node2
在node2上执行:
1kubeadm reset
2ifconfig cni0 down
3ip link delete cni0
4ifconfig flannel.1 down
5ip link delete flannel.1
6rm -rf /var/lib/cni/
在node1上执行:
1kubectl delete node node2
3.Kubernetes常用组件部署 #
越来越多的公司和团队开始使用Helm这个Kubernetes的包管理器,我们也将使用Helm安装Kubernetes的常用组件。
3.1 Helm的安装 #
Helm由客户端命helm令行工具和服务端tiller组成,Helm的安装十分简单。 下载helm命令行工具到master节点node1的/usr/local/bin下,这里下载的2.9.1版本:
1wget https://storage.googleapis.com/kubernetes-helm/helm-v2.11.0-linux-amd64.tar.gz
2tar -zxvf helm-v2.11.0-linux-amd64.tar.gz
3cd linux-amd64/
4cp helm /usr/local/bin/
为了安装服务端tiller,还需要在这台机器上配置好kubectl工具和kubeconfig文件,确保kubectl工具可以在这台机器上访问apiserver且正常使用。 这里的node1节点以及配置好了kubectl。
因为Kubernetes APIServer开启了RBAC访问控制,所以需要创建tiller使用的service account: tiller并分配合适的角色给它。 详细内容可以查看helm文档中的Role-based Access Control。 这里简单起见直接分配cluster-admin这个集群内置的ClusterRole给它。创建rbac-config.yaml文件:
1apiVersion: v1
2kind: ServiceAccount
3metadata:
4 name: tiller
5 namespace: kube-system
6---
7apiVersion: rbac.authorization.k8s.io/v1beta1
8kind: ClusterRoleBinding
9metadata:
10 name: tiller
11roleRef:
12 apiGroup: rbac.authorization.k8s.io
13 kind: ClusterRole
14 name: cluster-admin
15subjects:
16 - kind: ServiceAccount
17 name: tiller
18 namespace: kube-system
1kubectl create -f rbac-config.yaml
2serviceaccount/tiller created
3clusterrolebinding.rbac.authorization.k8s.io/tiller created
接下来使用helm部署tiller:
1helm init --service-account tiller --skip-refresh
2Creating /root/.helm
3Creating /root/.helm/repository
4Creating /root/.helm/repository/cache
5Creating /root/.helm/repository/local
6Creating /root/.helm/plugins
7Creating /root/.helm/starters
8Creating /root/.helm/cache/archive
9Creating /root/.helm/repository/repositories.yaml
10Adding stable repo with URL: https://kubernetes-charts.storage.googleapis.com
11Adding local repo with URL: http://127.0.0.1:8879/charts
12$HELM_HOME has been configured at /root/.helm.
13
14Tiller (the Helm server-side component) has been installed into your Kubernetes Cluster.
15
16Please note: by default, Tiller is deployed with an insecure 'allow unauthenticated users' policy.
17To prevent this, run `helm init` with the --tiller-tls-verify flag.
18For more information on securing your installation see: https://docs.helm.sh/using_helm/#securing-your-helm-installation
19Happy Helming!
tiller默认被部署在k8s集群中的kube-system这个namespace下:
1kubectl get pod -n kube-system -l app=helm
2NAME READY STATUS RESTARTS AGE
3tiller-deploy-6f6fd74b68-kk2z9 1/1 Running 0 3m17s
1helm version
2Client: &version.Version{SemVer:"v2.11.0", GitCommit:"2e55dbe1fdb5fdb96b75ff144a339489417b146b", GitTreeState:"clean"}
3Server: &version.Version{SemVer:"v2.11.0", GitCommit:"2e55dbe1fdb5fdb96b75ff144a339489417b146b", GitTreeState:"clean"}
注意由于某些原因需要网络可以访问gcr.io和kubernetes-charts.storage.googleapis.com,如果无法访问可以通过
helm init --service-account tiller --tiller-image <your-docker-registry>/tiller:v2.11.0 --skip-refresh
使用私有镜像仓库中的tiller镜像
3.2 使用Helm部署Nginx Ingress #
为了便于将集群中的服务暴露到集群外部,从集群外部访问,接下来使用Helm将Nginx Ingress部署到Kubernetes上。 Nginx Ingress Controller被部署在Kubernetes的边缘节点上,关于Kubernetes边缘节点的高可用相关的内容可以查看我前面整理的Bare metal环境下Kubernetes Ingress边缘节点的高可用。 这里简单起见,只有一个edge节点。
我们将node1(192.168.61.11)同时做为边缘节点,打上Label:
1kubectl label node node1 node-role.kubernetes.io/edge=
2node/node1 labeled
3
4kubectl get node
5NAME STATUS ROLES AGE VERSION
6node1 Ready edge,master 46m v1.12.0
7node2 Ready <none> 22m v1.12.0
stable/nginx-ingress chart的值文件ingress-nginx.yaml:
1controller:
2 service:
3 externalIPs:
4 - 192.168.61.11
5 nodeSelector:
6 node-role.kubernetes.io/edge: ''
7 tolerations:
8 - key: node-role.kubernetes.io/master
9 operator: Exists
10 effect: NoSchedule
11
12defaultBackend:
13 nodeSelector:
14 node-role.kubernetes.io/edge: ''
15 tolerations:
16 - key: node-role.kubernetes.io/master
17 operator: Exists
18 effect: NoSchedule
1helm repo update
2
3helm install stable/nginx-ingress \
4-n nginx-ingress \
5--namespace ingress-nginx \
6-f ingress-nginx.yaml
1kubectl get pod -n ingress-nginx -o wide
2NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
3nginx-ingress-controller-7577b57874-m4zkv 1/1 Running 0 9m13s 10.244.0.10 node1 <none>
4nginx-ingress-default-backend-684f76869d-9jgtl 1/1 Running 0 9m13s 10.244.0.9 node1 <none>
如果访问http://192.168.61.11返回default backend,则部署完成:
1curl http://192.168.61.11/
2default backend - 404
3.2 将TLS证书配置到Kubernetes中 #
当使用Ingress将HTTPS的服务暴露到集群外部时,需要HTTPS证书,这里将*.frognew.com的证书和秘钥配置到Kubernetes中。
后边部署在kube-system命名空间中的dashboard要使用这个证书,因此这里先在kube-system中创建证书的secret
1kubectl create secret tls frognew-com-tls-secret --cert=fullchain.pem --key=privkey.pem -n kube-system
2secret/frognew-com-tls-secret created
3.3 使用Helm部署dashboard #
kubernetes-dashboard.yaml:
1ingress:
2 enabled: true
3 hosts:
4 - k8s.frognew.com
5 annotations:
6 nginx.ingress.kubernetes.io/ssl-redirect: "true"
7 nginx.ingress.kubernetes.io/secure-backends: "true"
8 tls:
9 - secretName: frognew-com-tls-secret
10 hosts:
11 - k8s.frognew.com
12rbac:
13 clusterAdminRole: true
注意因为Service kubernetes-dashboard启用了https,所以是secure backend,在创建Ingress时需要用annotation指定
nginx.ingress.kubernetes.io/secure-backends: "true"
。 (更新:ingress-nginx更新的版本中改用nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"
代替nginx.ingress.kubernetes.io/secure-backends: "true"
)
1helm install stable/kubernetes-dashboard \
2-n kubernetes-dashboard \
3--namespace kube-system \
4-f kubernetes-dashboard.yaml
1kubectl -n kube-system get secret | grep kubernetes-dashboard-token
2kubernetes-dashboard-token-tjj25 kubernetes.io/service-account-token 3 37s
3
4kubectl describe -n kube-system secret/kubernetes-dashboard-token-tjj25
5Name: kubernetes-dashboard-token-tjj25
6Namespace: kube-system
7Labels: <none>
8Annotations: kubernetes.io/service-account.name=kubernetes-dashboard
9 kubernetes.io/service-account.uid=d19029f0-9cac-11e8-8d94-080027db403a
10
11Type: kubernetes.io/service-account-token
12
13Data
14====
15namespace: 11 bytes
16token: eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJrdWJlcm5ldGVzLWRhc2hib2FyZC10b2tlbi10amoyNSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50Lm5hbWUiOiJrdWJlcm5ldGVzLWRhc2hib2FyZCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6ImQxOTAyOWYwLTljYWMtMTFlOC04ZDk0LTA4MDAyN2RiNDAzYSIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDprdWJlLXN5c3RlbTprdWJlcm5ldGVzLWRhc2hib2FyZCJ9.w1HZrtBOhANdqSRLNs22z8dQWd5IOCpEl9VyWQ6DUwhHfgpAlgdhEjTqH8TT0f4ftu_eSPnnUXWbsqTNDobnlxet6zVvZv1K-YmIO-o87yn2PGIrcRYWkb-ADWD6xUWzb0xOxu2834BFVC6T5p5_cKlyo5dwerdXGEMoz9OW0kYvRpKnx7E61lQmmacEeizq7hlIk9edP-ot5tCuIO_gxpf3ZaEHnspulceIRO_ltjxb8SvqnMglLfq6Bt54RpkUOFD1EKkgWuhlXJ8c9wJt_biHdglJWpu57tvOasXtNWaIzTfBaTiJ3AJdMB_n0bQt5CKAUnKBhK09NP3R0Qtqog
在dashboard的登录窗口使用上面的token登录。
3.4 使用Helm部署metrics-server #
从Heapster的github https://github.com/kubernetes/heapster中可以看到已经,heapster已经DEPRECATED。这里heapster的deprecation timeline。可以看出heapster从Kubernetes 1.12开始将从Kubernetes各种安装脚本中移除。
Kubernetes推荐使用metrics-server(https://github.com/kubernetes-incubator/metrics-server)。我们这里也使用helm来部署metrics-server。
metrics-server.yaml:
1args:
2- --logtostderr
3- --kubelet-insecure-tls
1helm install stable/metrics-server \
2-n metrics-server \
3--namespace kube-system \
4-f metrics-server.yaml
部署后,查看metrics-server的日志,报下面的错误:
1E1003 05:46:13.757009 1 manager.go:102] unable to fully collect metrics: [unable to fully scrape metrics from source kubelet_summary:node1: unable to fetch metrics from Kubelet node1 (node1): Get https://node1:10250/stats/summary/: dial tcp: lookup node1 on 10.96.0.10:53: no such host, unable to fully scrape metrics from source kubelet_summary:node2: unable to fetch metrics from Kubelet node2 (node2): Get https://node2:10250/stats/summary/: dial tcp: lookup node2 on 10.96.0.10:53: read udp 10.244.1.6:45288->10.96.0.10:53: i/o timeout]
可以看到metrics-server
在从kubelet的10250端口获取信息时,使用的是hostname,而因为node1和node2是一个独立的演示环境,只是修改了这两个节点系统的/etc/hosts文件,而并没有内网的DNS服务器,所以metrics-server
中不认识node1和node2的名字。这里我们可以直接修改Kubernetes集群中的coredns的configmap,修改Corefile加入hostnames插件,将Kubernetes的各个节点的主机名加入到hostnames中,这样Kubernetes集群中的所有Pod都可以从CoreDNS中解析各个节点的名字。
1kubectl edit configmap coredns -n kube-system
2
3apiVersion: v1
4data:
5 Corefile: |
6 .:53 {
7 errors
8 health
9 hosts {
10 192.168.61.11 node1
11 192.168.61.12 node2
12 fallthrough
13 }
14 kubernetes cluster.local in-addr.arpa ip6.arpa {
15 pods insecure
16 upstream
17 fallthrough in-addr.arpa ip6.arpa
18 }
19 prometheus :9153
20 proxy . /etc/resolv.conf
21 cache 30
22 loop
23 reload
24 loadbalance
25 }
26kind: ConfigMap
配置修改完毕后重启集群中coredns和metrics-server,确认metrics-server不再有错误日志。使用下面的命令可以获取到关于集群节点基本的指标信息:
1kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes"
遗憾的是,当前Kubernetes Dashboard还不支持metrics-server。因此如果使用metrics-server替代了heapster,将无法在dashboard中以图形展示Pod的内存和CPU情况(实际上这也不是很重要,当前我们是在Prometheus和Grafana中定制的Kubernetes集群中各个Pod的监控,因此在dashboard中查看Pod内存和CPU也不是很重要)。 Dashboard的github上有很多这方面的讨论,如
https://github.com/kubernetes/dashboard/issues/3217
和https://github.com/kubernetes/dashboard/issues/3270
,Dashboard已经准备在将来的某个时间点支持metrics-server。但由于metrics-server和metrics pipeline肯定是Kubernetes在monitor方面未来的方向,所以我们也很果断的在各个环境中切换到了metrics-server。
4.总结 #
本次安装涉及到的Docker镜像:
1# kubernetes
2k8s.gcr.io/kube-apiserver:v1.12.0
3k8s.gcr.io/kube-controller-manager:v1.12.0
4k8s.gcr.io/kube-scheduler:v1.12.0
5k8s.gcr.io/kube-proxy:v1.12.0
6k8s.gcr.io/etcd:3.2.24
7k8s.gcr.io/pause:3.1
8
9# network and dns
10quay.io/coreos/flannel:v0.10.0-amd64
11k8s.gcr.io/coredns:1.2.2
12
13
14# helm and tiller
15gcr.io/kubernetes-helm/tiller:v2.11.0
16
17# nginx ingress
18quay.io/kubernetes-ingress-controller/nginx-ingress-controller:0.19.0
19k8s.gcr.io/defaultbackend:1.4
20
21# dashboard and metric-sever
22k8s.gcr.io/kubernetes-dashboard-amd64:v1.10.0
23gcr.io/google_containers/metrics-server-amd64:v0.3.0